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Abstract— In this work, we introduce a Real-Time Operator
Takeover (RTOT) paradigm for imitation learning-based meth-
ods, alongside novel insights into leveraging the Mahalanobis
distance to automatically detect undesirable states. RTOT
enables operators to seamlessly take control of a live visuomotor
diffusion policy, guiding the system back into desirable states
or reinforcing specific demonstrations. Once the operator has
intervened and redirected the system, the control is seamlessly
returned to the policy, which resumes generating actions until
further intervention is required. We demonstrate that incor-
porating these targeted takeover demonstrations significantly
improves policy performance compared to training solely with
an equivalent number of, but longer, initial demonstrations.
Furthermore, we provide an in-depth analysis of using the
Mahalanobis distance to detect out-of-distribution states, illus-
trating its utility for identifying critical failure points during
execution. Supporting materials, including videos of initial and
takeover demonstrations and all rice-scooping experiments, are
available on the project website1.

I. INTRODUCTION

Imitation learning has achieved great success in recent
years in a variety of challenging robotic tasks, such as cook-
ing shrimp and wiping wine [1], serving rice and opening
bottles using a bottle opener [2], and 6Dof mug flipping,
sauce pouring, and spreading [3].

A key component of imitation learning methods, such
as Visuomotor Diffusion Policies [3], Action Chunking
with Transformers [4], or Visual Imitation through Nearest
Neighbor [5], is the expert demonstrations that serve as
training data. One approach to enhance these demonstrations
is to purify potential noise in imperfect data after collec-
tion [6]. Another more prominent approach is to facilitate
the collection of high-quality demonstrations using various
teleoperation methods, such as virtual reality controllers or
hand tracking [7]–[10], augmented reality [11], [12], and
leader-follower puppeteering approaches [4], [13], [14].While improving teleoperation systems significantly
boosts the performance of imitation learning methods, they
do not address a fundamental problem: how to cover suffi-
cient variations in demonstrations/tasks to make the learned
policy more robust. Enhancing robustness in imitation learn-
ing is an active area of research [15], [16]. Although such
methods improve the handling of scene variations, they still
struggle when encountering states that are not present in the
training data. Policies often fail in such scenarios, getting
stuck due to the lack of demonstrations for recovering from
undesirable states.
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Fig. 1. Our Real-Time Operator Takeover paradigm. After training a policy
with a small number of initial demonstrations, we run the policy in the
environment with the operator on standby. As soon as the policy enters an
undesirable state, the operator seamlessly takes over, and only the takeover
portion is recorded as new demonstrations. A new policy is trained, and the
paradigm can be repeated until the desired performance is achieved.

In this work, we tackle this challenge with our Real-Time
Operator Takeover (RTOT) paradigm. The core idea is that
even the most skilled operator may struggle to anticipate
and demonstrate recovery scenarios or failure cases the
policy might encounter. Our RTOT approach addresses this
limitation by first training an initial policy with a smaller
set of demonstrations than typically used in the literature.
This policy is then deployed in the environment while the
operator remains on standby. When the operator observes the
system entering or approaching an undesirable state, they
seamlessly take control to teleoperate the robot back to a
desirable state. This takeover demonstrations are recorded,
and a new policy is trained using both the initial and the
newly recorded takeover demonstrations. As shown in Fig. 1,
this paradigm can be repeated as many times as necessary
to achieve the desired performance for any given task.

In detail, our contributions are as follows:
1) Introduction and validation of the RTOT paradigm on

a real-world rice-scooping task.
2) Analysis of the Mahalanobis distance (a measure of

distance from a point to a distribution) and its potential
applications in imitation learning-based methods.

3) Extensive videos showcasing the initial demonstration
collection, the takeover demonstration collection, and
all 50 rice-scooping experiments, available on the
project website1.

Operator-Takeover.github.io


II. BACKGROUND & RELATED WORK

A. Visuomotor Diffusion Policies

Diffusion models [17], initially introduced in generative
image modeling, have recently gained popularity in robotics
as a versatile and powerful framework. Compared to tradi-
tional discriminative models, diffusion models demonstrate
remarkable generalization capabilities [18]. Fundamentally,
visuomotor diffusion-based policy models generate com-
plex structured data distributions iteratively, by learning a
stochastic transport map from a known prior distribution (e.g.
Gaussian noise) to a desired target distribution. In robotics,
the target distribution often consists of action sequences that
enable a robot to accomplish specific tasks.

A key strength of diffusion models lies in their ability to
learn behaviors using a limited amount of demonstrations [3],
as well as requiring minimal explicit modeling of tasks or
environments, making these models highly adaptable for
a wide range of applications. Recent work has leveraged
diffusion models to address planning problems [19]–[21]
and perform various robotic manipulation tasks [3], [22],
[23], often relying on images as input. Other applications
include control of bi-manual mobile manipulation systems
for navigating indoor environments and performing kitchen
tasks [1], as well as manipulating deformable objects in
robot-assisted surgical scenarios [24].

B. Imitation Learning and Out-of-Distribution Detection.

Imitation learning enables robots to acquire skills from
expert demonstrations [25] by framing the problem as su-
pervised learning from observations to actions. Recent ad-
vancements have incorporated historical context [26]–[29],
alternative training objectives [5], [30], multi-task and few-
shot learning [31]–[33], and language-conditioned policies
for semantic understanding [34]. These methods have im-
proved generalization to task variations [28], [29], [35] and
enabled fine-manipulation on low-cost hardware [4].

A key challenge in imitation learning is the compounding
error [36], which leads robots to difficult-to-recover, out-of-
distribution (OOD) states [37], [38]. To mitigate this, various
strategies have been explored, including on-policy expert
corrections in DAgger [37] and its variants [39], [40], re-
ward function modifications [41], [42], offline synthetic data
generation [43]–[45], and training of recovery policies [46].
However, expert interventions can be time-consuming and
impractical with current teleoperation interfaces [44], moti-
vating the proposed seamless real-time takeover paradigm.

Despite efforts in OOD state detection [47], [48],
diffusion-based models [3] generally do not integrate these
mechanisms and rather rely only on demonstrations which
extensively cover the training manifold. A critical limitation
remains in detecting distribution shifts during deployment
while demonstrations are still being collected. To address
this, we propose a human-in-the-loop framework that enables
seamless intervention during OOD occurrences, facilitating
targeted data collection.

C. Human-in-the-Loop and Real-Time Takeover.

Human-robot interaction (HRI) has advanced considerably
in recent years, fundamentally transforming how humans and
robots collaborate and coexist [49]. These developments are
largely driven by machine learning and the integration of
multimodal data [50]. In robotic manipulation, teleoperation
enables natural human control of robots, leveraging human
cognitive abilities and domain expertise alongside the phys-
ical capabilities of humanoid robots [51].

One prevalent class of methods for teleoperation employs
virtual-, augmented-, and mixed-reality (VAM) frameworks,
which serve as a common interface between human and
robot. These frameworks have been applied to diverse areas
in robotics, including motion planning and HRI [52], or often
used to control robot manipulators via position or velocity
control [53], [54]. Applications include object handover [55],
visualizing robot intentions during delivery tasks [56], and
executing cloth manipulation tasks [7].

To the best of our knowledge, however, there is virtually
no work in the realm of HRI for robotic manipulation that
explicitly permits a human to seamlessly assume control to
correct the robot’s movement while simultaneously recording
the new trajectory to make it available for training. Al-
though some studies have employed takeover request (TOR)
frameworks in autonomous driving [57] or other have
implemented action corrections to ensure successful task
completion [7], [58], these approaches do not incorporate
the detection of out-of-distribution (OOD) states or the
explicit recording of the takeover as a new demonstration.
This motivates our RTOT paradigm, which we are going to
explain in more details in the following section.

III. METHOD

In this section, we describe our framework for enabling
real-time operator takeover to improve visuomotor diffusion
policy training.

The core concept, illustrated in Fig.3, involves collecting
an initial set of demonstrations (DI) to train an initial policy
(πI). The policy is deployed in the environment while the
operator remains on standby, ready to takeover if the system
approaches an undesirable state. In such cases, the operator
can take control in real-time by pressing a button on the VR
controller. The operator intervenes to prevent the robot from
spilling rice (fourth frame), guides it to successfully deposit
the rice into the bowl, and then returns the control back to
the policy. These takeover interventions are recorded as new
demonstrations and a subsequent policy π1

IT is trained using
the combined dataset of initial and takeover demonstrations.
This iterative process ensures that the policy continuously
improves by addressing failure cases encountered during exe-
cution, rather than relying solely on the initial demonstrations
of the operator.

A. Real-Time Takeover

A visuomotor diffusion policy [3] is initially trained on
a demonstration dataset DI . The demonstrations are col-
lected by teleoperating the robot using the Quest2ROS [8]



Fig. 2. Real-Time Operator Takeover in action: The policy πI controls the robot until a state is reached where the operator must take over to avoid spilling
rice on the table. After the operator completes the intervention (depositing the rice in the bowl), control is seamlessly returned to πI .

application, which relays the VR controller’s velocities to
a Cartesian velocity controller on the robot. The operator
controls the robot by pressing the side trigger button on the
VR controller, and only actions executed while the trigger
is pressed are recorded as 6D end-effector velocities. Any
pauses in operation—where the trigger is released, allowing
the operator to reposition their hand or stop the robot—are
omitted from the recorded data. This ensures a clean dataset
by removing unnecessary idle information.

Once the initial policy πI is trained, it is deployed in
the environment, where it generates 6D velocity commands
for the robot. While the policy operates, a ring buffer
continuously records observations. Each observation includes
the end-effector camera’s RGB view and proprioceptive
information such as the robot’s pose. If the operator ob-
serves the policy moving toward an undesirable state (e.g.,
spilling rice), they press the VR controller’s trigger button
to intervene. When this occurs, the takeover actions are
immediately applied to the robot, overriding the policy-
generated commands.

Importantly, the contents of the ring buffer (representing
the sequence of observations leading up to the intervention)
are also saved as part of the new takeover demonstration.
This ensures that the collected data includes context from
moments just before the operator’s takeover, providing the
policy with more nuanced information about failure recov-
ery. While the operator continues teleoperating the robot,
subsequent observations and actions are recorded until the
operator deems the system to be in a desirable state again.
At this point, releasing the trigger seamlessly hands control
back to the policy, which resumes generating actions.

This targeted approach allows the operator to focus only
on correcting problematic scenarios, avoiding redundant data
collection for states already well-handled by the policy.
The result is a compact and highly relevant dataset that
incrementally addresses failure cases as they arise. A detailed
schematic of this process is illustrated in Fig. 3.

Through this iterative process, our RTOT paradigm en-
sures that the dataset evolves to cover a wide range of
scenarios, including recovery from failure cases. This tar-
geted, incremental improvement results in a more robust
and capable policy compared to traditional imitation learning
approaches.

IV. EXPERIMENTAL SETUP

Our primary goal in this section is to investigate
whether training visuomotor policies using real-time operator

Fig. 3. Illustration of the Real-Time Takeover process: While the policy
sends actions, observations (end-effector RGB view and robot pose) are
continuously stored in a ring buffer. When the operator takes control using
the VR controller, these ring buffer observations, along with subsequent
data, are recorded as a new demonstration in DT .

takeover leads to improved task performance.
We evaluate this through a cyclic rice scooping task,

as shown in Fig. 1. The objective is to scoop rice from
the bowl on the left (positioned in the white rectangle)
and deposit it into the bowl on the right (which can be
placed anywhere within its respective rectangle). To address
the cyclic nature of the task, the initial demonstrations are
designed to both start and end at approximately the same
position after successfully completing one scoop.

To begin, we collect an initial dataset D60
I consisting of 60

expert demonstrations. These demonstrations are performed
while varying the locations of the rice bowls to introduce di-
versity in the training data. From this comprehensive dataset,
we extract two smaller subsets: the first 20 demonstrations
form D20

I , and the first 40 demonstrations form D40
I . Using

these datasets, we train corresponding policies: π20
I , π40

I , and
π60

I .
Next, we deploy π20

I in the rice scooping environment as
described in Section ??. During this deployment, we collect
20 additional takeover demonstrations, denoted as DT 20a,
while systematically varying the rice bowl positions. These
takeover demonstrations are then combined with the initial
dataset DI20 to form an augmented dataset DIT a, which is
used to train a new policy, πIT a.

This new policy, πa
IT , is subsequently deployed again in



Fig. 4. Demonstration lengths for the datasets used to train the evaluated
visuomotor policies. The takeover paradigm produces significantly shorter
demonstrations on average, highlighting its efficiency.

the rice scooping environment to collect an additional 20
takeover demonstrations, DT 20b. The final dataset, DIT b,
comprises the initial demonstrations and both sets of takeover
demonstrations: Db

IT = D20
I ∪D20a

T ∪D20b
T . The correspond-

ing policy trained on this dataset is the final policy evaluated
in this study.

Analysis of Dataset Lengths. We analyze the lengths
of the different datasets used to train the policies. Fig. 4
shows a violin plot illustrating these differences. Notably,
the initial datasets D20

I , D40
I , and DI60 have similar mean

demonstration times of 13.6s, 14.4s, and 14.5s, respectively,
with total demonstration times of 272.0s, 574.3s, and 869.0s.
In contrast, the takeover dataset DIT a achieves a mean
demonstration time of 9.5s, resulting in a total demonstration
time of 377.8s, which is 34% shorter than D40

I despite
containing the same number of demonstrations.

This efficiency is even more pronounced in the final
dataset, Db

IT , which has the shortest mean demonstration
time of 7.76s and a total demonstration time of 465.6s—a
reduction of 46% compared to its non-takeover counter-
part, D60

I . These results demonstrate the efficiency of the
takeover paradigm in generating compact and targeted train-
ing datasets without sacrificing task performance.

Additionally, the combination of initial and takeover
demonstrations helps to address failure cases more effec-
tively, as takeover demonstrations specifically focus on chal-
lenging scenarios encountered during policy deployment.
This iterative process not only improves policy robustness
but also reduces the overall training time required to achieve
high task performance.

Videos showcasing the initial demonstrations, takeover
demonstrations, and task evaluations are available on the
project’s website1.

V. EXPERIMENTAL EVALUATION

We evaluate the performance of five different policies
(π20

I ,π40
I ,πa

IT ,π
60
I ,πb

IT ) on the cyclic rice scooping task. The

Fig. 5. Detailed results of the cyclic rice scooping experiments. The amount
of rice (in grams) is shown for each of the 10 trials across all five evaluated
policies.

goal of the task is to transfer as much rice as possible from
a full bowl to an empty bowl within 45 seconds, measured
in grams. For each policy, we conduct 10 trials, each with
different placement locations for the bowls. Videos of all 50
experiments are available on the project website.

The detailed results of these experiments are shown in
Fig.5, and the mean and standard deviation (std) of the
scooped rice for each policy are summarized in TableV.

Model # Demos Mean ± std [g]
π20

I 20 4.0±4.0

π40
I 40 19.8±12.9

πa
IT 40 35.4±11.0

π60
I 60 41.0±13.5

πb
IT 60 49.2±9.4

TABLE I
MEANS AND STANDARD DEVIATIONS OF THE RICE SCOOPED IN 45

SECOND OVER THE 10 TRAILS.

Results and Analysis. The results reveal a clear trend: the
performance of baseline policies improves with the number
of initial demonstrations. For example, π20

I , trained on only
20 demonstrations, achieved an average of 4.00 grams of rice
scooped across 10 trials. Increasing the dataset to 40 demon-
strations boosted the performance significantly, with π40

I
averaging 19.80 grams. Using all 60 initial demonstrations,
π60

I achieved a substantial improvement, scooping an average
of 41.00 grams per trial. This highlights the importance
of larger datasets for improving baseline performance in
visuomotor policy training.

To address the question of whether employing the real-
time operator takeover paradigm leads to better task perfor-
mance, we compare the performance of the baseline π40

I with
that of the takeover-enhanced policy πa

IT . Remarkably, πa
IT

achieved an average of 35.40 grams scooped, representing a
79% improvement over π40

I . Similarly, the final policy, πb
IT ,

trained on both initial and two sets of takeover demonstra-
tions, outperformed π60

I by 20%, with an average of 49.20



grams scooped per trial.
Efficiency of Takeover Demonstrations. These results

are particularly noteworthy given that the total demonstration
time for the takeover datasets is significantly lower. For
example, the total demonstration time for Db

IT is 465.6
seconds, which is 46% shorter than the total time for
DI60 (869.0 seconds). Despite this reduction, πIT b out-
performs the baseline trained on the full dataset of initial
demonstrations. This indicates that the targeted nature of
takeover demonstrations, focusing on failure cases, provides
more valuable information for policy training compared to
redundant initial demonstrations.

Key Insights. These findings highlight two important
aspects. First, redundant demonstrations contribute only
marginally to further performance improvement once the
policy has mastered the easier portions of the task. Second,
it is extremely challenging to anticipate all potential failure
cases during the initial demonstration phase. The real-time
operator takeover paradigm addresses these challenges by
iteratively improving the policy. By taking control only
when the system encounters undesirable states, the operator
provides precise, context-specific demonstrations that were
missing from the initial dataset.

VI. TO TAKEOVER OR NOT TO TAKEOVER

In the current framework, the decision of when to perform
a takeover is left entirely to the operator. We argue that
this is a sensible approach, given that the quality of the
initial demonstrations—and more broadly, the overall task
performance—is highly influenced by the quality of these
demonstrations [5]. However, having a more systematic way
of assessing how close the robot is to undesirable states, or
detecting when such states occur, could provide significant
benefits.

Recall that we assume all expert demonstrations repre-
sent desirable states. The Denoising Diffusion Probabilis-
tic Model (DDPM) employed here is trained to mini-
mize the KL-divergence between the conditional distribution
p(At |Ot)—where actions A and observations O are derived
from the expert demonstrations—and the distribution of
samples generated by the DDPM. Intuitively, this means
the policy struggles to produce meaningful actions if the
current observations (or more precisely, the embeddings of
those observations) differ significantly from the data used in
training. Improving the robustness of visuomotor diffusion
policies against such variations in observations remains an
active area of research [6], [16].

This motivates the need for a metric that evaluates how
far observations obtained during inference deviate from the
training distribution. Such a metric could serve as an out-
of-distribution (OOD) measure to better inform intervention
decisions.

A. Mahalanobis Distance as an OOD Measure

The Mahalanobis distance provides a statistical measure of
the distance between a point and a distribution, accounting
for correlations between variables. It is computed as:

dM =
√

(x−µ)⊤Σ−1(x−µ) (1)

Here, µ is the mean vector of the distribution, Σ is the
covariance matrix, and x is the queried data point.

Given the high dimensionality of the RGB images, we
instead compute embeddings of the images concatenated
with the robot pose. Each observation is encoded into a 1056-
dimensional vector (two 512-dimensional embeddings for the
images and two 16-dimensional embeddings for the pose).
These embeddings serve as the conditioning input for the
diffusion model.

To evaluate the Mahalanobis distance, we first encode all
datasets DI20, DI40, DI60, DIT a, and DIT b using their
respective trained models (π20

I , π40
I , π60

I , πIT a, and πb
IT ).

This produces embeddings Z20
I , Z40

I , Z60
I , Za

IT , and Zb
IT .

Similarly, all observations recorded during the experiments
(E ) are encoded using these models, resulting in H20

I , H40
I ,

H60
I , Ha

IT , and Hb
IT .

We estimate the mean (µ) and covariance matrix (Σ) of
each embedding set using the Minimum Covariance Deter-
minant Estimator implemented in scikit-learn [59]. For each
encoded observation h ∈ H, the Mahalanobis distance dM is
calculated using Algorithm 1.

Algorithm 1 Mahalanobis Distance Calculation

1: Input: Datasets D20
I , D40

I , D60
I , Da

IT , Db
IT ,

trained models π20
I , π40

I , π60
I , πa

IT , πb
IT ,

experimental observations E .
2: Output: Mahalanobis distances dm for each observation

encoding h ∈ H with respect to each embedding set.
3: Step 1: Encode Dataset Embeddings
4:

Z20
I = π

20
I (D20

I ), Z40
I = π

40
I (D40

I ), Z60
I = π

60
I (D60

I ),

Za
IT = π

a
IT (D

a
IT ), Zb

IT = π
b
IT (D

b
IT )

5: Step 2: Encode Experimental Observations
6:

H20
I = π

20
I (E ), H40

I = π
40
I (E ), H60

I = π
60
I (E ),

Ha
IT = π

a
IT (E ), Hb

IT = π
b
IT (E )

7: Step 3: Calculate Mahalanobis Distances
8: for each Z ∈ {Z20

I ,Z40
I ,Z60

I ,Za
IT ,Z

b
IT} and

H ∈ {H20
I ,H40

I ,H60
I ,Ha

IT ,H
b
IT} do

9: µZ ,ΣZ = MinCovDet(Z)
10: for each encoding h ∈ H do
11: dm(h,µZ ,ΣZ) =

√
(h−µZ)T Σ

−1
Z (h−µZ)

12: end for
13: end for

B. Mahalanobis Distance Analysis
The summarized results of Algorithm 1 are presented as

violin plots in Fig. 6.
We observe that D20

I , the dataset with the highest average
Mahalanobis distance, corresponds to the worst-performing



Fig. 6. Violin plots of Mahalanobis distances for experimental observations
compared to the learned distribution for each dataset.

policy, π20
I . This suggests that the Mahalanobis distance

provides some indication of how far an observation during
rollout deviates from the training distribution. Adding more
demonstrations to the training set reduces the average Ma-
halanobis distance of observations gathered during experi-
ments.

However, an interesting anomaly is observed when com-
paring DI40 to DIT a or DI60 to DIT b: the mean Ma-
halanobis distance does not directly correlate with task
performance. For example, πb

IT outperforms π60
I in scooping

rice but has a similar Mahalanobis distance profile.
Case Study: Trial 3. To explore this further, we analyze

a specific trial in Fig. 7. For Trial number three, we compare
the Mahalanobis distances of policies π20

I , πb
IT , and π60

I . We
observe that π20

I starts of with the highst distance while πb
IT ,

and π60
I are both around 40. the better in task performing

πb
IT however then exhibits a slightly higher distance as the

trail goes on however non of the states encounterd would
need requiere the takeover of the operator and the distance
stays below 100 for the entiere duration of the trail.

The poorly performing policy π20
I exhibits the highest

Mahalanobis distance peaking at around 160, around the 25s
mark, when the robot’s spoon moves outside the target bowl
and fails to recover. The robot remains stuck in this state
until the trial ends, highlighting the relationship between high
Mahalanobis distance and undesirable states. In contrast,
both π60

I and πb
IT maintain relatively lower Mahalanobis

distances throughout the trial, with no significant increases.
While πb

IT outperforms π60
I in task performance, the Maha-

lanobis distance does not differentiate much between the two
policies in this regard. We also observe that the sudden stops
and therefore camera shaking have significantly influence as
can be observed on the last peak in πb

IT (orange), and π60
I

(green) around the 45s mark which was introduced by the
sudden stop of the robot as the experiment was concluded.
Furthermore, we see that the distance remains constant as
long as no changes in the image are introduced via motion.

Key Insights While the Mahalanobis distance may not
perfectly predict task performance (e.g., rice scooped), it
successfully identifies undesirable states that lead to per-
formance degradation, such as the robot becoming stuck.
This insight highlights the potential for developing auto-
mated recovery strategies based on significant increases in

Mahalanobis distance. Additionally, these findings provide a
deeper understanding of the role of demonstrations in im-
proving policy robustness, underscoring the value of diverse
and targeted training datasets.

VII. CONCLUSION

In this work, we introduced a real-time operator takeover
(RTOT) paradigm for training visuomotor diffusion policies.
This framework empowers users to seamlessly take control of
the robot from a suboptimal policy, preventing failures during
execution. These takeover demonstrations are subsequently
integrated into the training process, iteratively refining the
policy until the desired performance is achieved.

Our experimental evaluation demonstrates the effective-
ness of this approach. Despite the total time of takeover
demonstrations being significantly shorter than that of the ini-
tial demonstrations, policies trained on these targeted datasets
consistently outperform their counterparts. In a cyclic rice
scooping task, policies enhanced with takeover demonstra-
tions achieved superior task performance, highlighting the
value of addressing failure cases during policy deployment
rather than relying solely on extensive initial datasets.

Beyond showcasing the utility of the RTOT framework,
we also explored the use of the Mahalanobis distance as
a tool for detecting out-of-distribution (OOD) states during
inference. Our analysis reveals that while the Mahalanobis
distance can successfully identify undesirable states, such as
those that lead to the robot becoming stuck, it is not an exact
predictor of final task performance. In particular, although
the Mahalanobis distance helps measure deviations from the
training distribution, it does not always correlate directly with
the quantity of rice scooped in our experiments. Nevertheless,
these insights underline the potential of the Mahalanobis
distance for enhancing policy robustness by flagging critical
states during deployment.

Contributions and Insights.
Real-Time Operator Takeover Paradigm: We demonstrated

how the RTOT framework can improve policy performance
by addressing failure scenarios iteratively. The targeted na-
ture of takeover demonstrations provides valuable training
data, focusing specifically on challenging states that are often
missing from initial demonstrations.

Efficiency of Takeover Demonstrations: Our results high-
light the efficiency of this approach, with takeover-enhanced
policies achieving better performance despite using signifi-
cantly less total demonstration time. This finding underscores
the importance of quality and relevance in training data over
sheer quantity.

Out-of-Distribution Detection: We provided a detailed
analysis of the Mahalanobis distance as an OOD measure,
showing its utility in detecting undesirable states during
policy execution. This metric can serve as a foundation
for future automated recovery mechanisms in robot control
systems.

In conclusion, the RTOT paradigm represents a signifi-
cant step toward more efficient and adaptive robot learn-
ing systems. By enabling real-time human intervention and



Fig. 7. The Mahalanobis distance of the embedded observations of trail #3 of the models π20
I ,πb

IT , and π60
I , with the RGB views shown for specific

timesteps.

leveraging targeted demonstrations, this approach provides a
practical and scalable solution for addressing the inherent
challenges of visuomotor policy training, particularly in
complex and unpredictable task environments.
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